モンテカルロ法によるランダム空孔群まわりの応力集中係数予測

Stress Concentration Factor Prediction for Random Porosity Model by Monte Carlo Method

前田 佳祐(福井大) 正 桑水流 理(福井大)
Keisuke MAEDA, University of Fukui, Bunkyo 3-9-1, Fukui-shi, Fukui
Osamu KUWAZURU, University of Fukui, Bunkyo 3-9-1, Fukui-shi, Fukui

Key Words: Die-Cast, Monte Carlo Method, Stress Concentration Factor, Probability, Porosity

1. 緒 言

ダイカスト材には、形を形成する段階で空孔が内部に発生 し、その影響で応力集中が発生するため、欠損のない材料よ りも強度が低下してしまう.しかし、まだダイカスト材内の 空孔間相互作用が判明していないため、正確な強度が算出で きない.理由は、ダイカスト材に発生する空孔群は大きさや 配置などがランダムで発生するためである.

この研究の目的は、ランダムな空孔による応力集中係数への影響を予測できるようにすることである.そうすることに よって、より効率よく製品を設計できるようになる.そのた めに、乱数によって空孔の配置と大きさをランダムに変化さ せるランダム空孔モデルを用いた.

2. 解析方法

2. 1 2 孔まわりの応力集中係数

応力集中係数とは、切り欠きや他の応力上昇要因が存 在する部分における最大応力の、公称応力に対する比である. ここでは、公称応力に対する最大応力集中係数の比として定 義する.また空孔は全て球形と仮定する.空孔群まわりの応 力集中係数を計算するために、2 孔間の応力集中係数の経験 的予測式⁽¹⁾を用いる.2 つの空孔の配置を図1に示す.空孔 の中心間距離を 2*d*,中心間距離を無次元化した値が $\mathcal{A} = 2d/\{a_1 + a_2\}$)、空孔の寸法比を $r(=a_2/a_1)$,中心間を結んだ直 線が引張軸に垂直な面となす角を θ と置く.このとき、2 孔 まわりの応力集中係数 K_1 は次式で求められ $A^{(1)}$

$K_{\rm t} = K_{\rm iso} + K_{\rm int}$	(1)
$K_{\text{int}} = \varphi(r) \cdot (\cos^2 \theta)^{\xi(r)} \cdot (\delta - 1)^{-\eta(r)}$	(2)
$\varphi(r) = 0.477 - 0.276(r^{5.00} + r^{-5.00})^{-0.275}$	(3)
$\xi(r) = 3.462 - 2.016(r^{1.038} + r^{-1.038})^{-0.338}$	(4)

 $\eta(r) = 0.180 + 0.471 (r^{5.00} + r^{-5.00})^{-0.0386}$ (5)

上式の K_{iso} は孤立空孔の応力集中係数, K_{int} は 2 つの空孔 間相互作用, $\varphi(r)$, g(r), $\eta(r)$ は K_{int} の係数で, 寸法比 r に依 存する値である. ここで, 3 次元弾性論解よりポアソン比 vを 0.3 としたときの K_{iso} の値は 2.046 である⁽²⁾.

上式から2孔間の応力集中係数 $K_t(\delta, r, \theta)$ を計算する.

Fig.1 Spherical dual-pore model

2. 2 ランダム空孔モデル

ー辺bの立方体領域に、大きさがランダムなN 個の球形空 孔をランダムに配置する.空孔の中心座標は一様乱数⁽³⁾で、 空孔の半径は正規乱数⁽³⁾で決定する.ただし、半径の平均を r_0 、半径の標準偏差を r_o とする.このときの空孔体積率をpとする.実際には、pの目標値と必要な空孔数N、平均半径 r_0 から領域サイズbを決定し、その中にN 個の空孔を乱数に よって発生させる.空孔群中の2孔間の応力集中係数を、式 (1)~(5)を用いて計算する.この計算を全ての空孔の組み合わ せで行い、空孔ごとの最大応力集中係数を出力する.そのヒ ストグラムから K_t の確率密度分布を調べ、累積確率から任意 の発生確率 α のランダム空孔群まわりの応力集中係数 K_t^{α} を 求める.

空孔の個数 N を決める基準が明確でないため、N を変えて K_tの確率密度分布を調べ、分布が十分に収束する N を指定する. これらの計算プログラムは FORTRAN77 を用いて作成した⁽⁴⁾.

半径 $r_0 \ge 0.1$ mm, 1mm, 5mm, 変動係数 $r_d/r_0 \ge 0.01$, 0.1, 0.5, 空孔体積率p(目標値) ≥ 0.1 %, 1%, 10% とそれぞれ変動 させ, K_t の確率密度分布鵜を調べる. それらの計算結果から ランダム空孔群まわりの応力集中係数を予測する式を作成 する.

3. 結果と考察

3.1 応力集中係数の確率密度分布

空孔数 N を約 20~200000 個と変化させ、 K_t の確率密度分 布の変化を調べる. 図 2 は、平均半径 r_0 =0.1mm,標準偏差 r_a =0.01mm,空孔体積率 p(目標値)=1%で、空孔数 N が 203 個の場合と 19099 個の場合の応力集中係数の確率密度分布で ある.空孔数が少ない場合、応力集中係数の確率密度分布は 収束していないが、空孔数をさらに増やしていったところ、 空孔数が約 20000 個の時点で収束した.これによって、空孔 モデルの応力集中係数のデータ数は約 10000~20000 個前後が 適当であると言える.

3. 2 空孔条件による応力集中係数の変化

空孔の体積率,平均半径,変動係数をそれぞれ変化させ, 各値が応力集中係数にどのような影響を与えるかを調べる. 図 3 は、図 2(b)から求めた応力集中係数 K_t の累積確率 α である. 以下では、 $K_t^{0.01} \geq K_t^{0.99}$ をおおよその下限と上限とする.

全部で 27 個のモデルを作成し、応力集中係数の下限と上限を計算する.計算結果を図4に示す.ただし、平均半径 1mmの結果は省略する. 横軸を空孔体積率p、縦軸を応力集中係数 K_t と置いている. プロットが平均値で、誤差棒で下限と上限を表す. 空孔の体積率が増加すると、 K_t の平均も増加し、ばらつきは大きくなる. その一方で空孔の平均半径と変動係数が応力集中係数に与える影響はあまり見られず、影響を与えるのは空孔体積率だけであることがわかる.

平均半径 r_0 が大きくなると, 鋳巣間距離も同時に大きくなるので δ は変化しないため, 式(2)から K_{int} に影響を与えない. また標準偏差が大きくなると半径のばらつきは大きくなるが, 半径が大きい空孔同士が隣り合う確率より大きい空孔と小さい空孔が隣り合う確率のほうが高いので, δ が変化せず, K_{int} に影響を与えない.よって, K_i はほぼ p だけによって定まることになる.

3.3 空孔体積率の応力集中係数への影響

複数の α に対する空孔体積率pと多孔間相互作用 K_{int} の関係を図5に示す.図5の各近似線から,空孔モデルの応力集中係数を予測する式を作成する.図5は27個作製したすべてのモデルのデータをまとめて,累積確率 α ごとに応力集中係数 K_t を近似している.図5の近似直線は次式で与えられる.

図 5 の各 K_t^a の近似線を計算し, A, Cに該当する値を累乗 近似する. その際,累積確率 a=0.01 のときの値が近似直線 から大きく外れてしまう事と,空孔数が10000~20000の場合, 累積確率 0.999 では外れる空孔の個数が10~20 個と非常に少 ないため,累乗近似する場合は $K_t^{0.999}$ と $K_t^{0.01}$ を除外して近似 した.

試行錯誤の結果,図6に示すように,AとCの変化を直線近 似できることがわかった.得られた予測式は

 $A = 0.7802 - 10^{0.2994} (1 - \alpha)^{-0.1822}$ (7) $C = 10^{-0.8687} (1 - \alpha)^{-0.4836}$ (8)

であった. これらの式(7), (8)を 式(6)に代入した式が, 空孔 モデルの応力集中係数の予測式である. *p*[%]で計算したた め, *p* に値を代入する際には注意が必要である. ただし, *α* は 0~1 の値である.

4.結 言

本研究では、空孔群モデルの応力集中係数の予測式を作成 することができた.これにより、空孔の発生する材料の設計 をより効率的に行うことができるようになると思われる.

文 献

- (1) 桑水流理, ほか4名:日本鋳造学会第159回全国講演大 会講演概要集(2011), p.96.
- (2) S. G. Lekhnitskii : Theory of an Anisotropic Body (MIR Publishing) (1981) pp404-411.
- (3) 長田秀和:統計学へのステップ (2000) 共立出版.
- (4) 浦昭二:電子計算機のプログラミング 8 FORTRAN77 入 門 (1990) 培風館.